EconPapers    
Economics at your fingertips  
 

A two-species competition model on

George Kordzakhia and Steven P. Lalley

Stochastic Processes and their Applications, 2005, vol. 115, issue 5, 781-796

Abstract: We consider a two-type stochastic competition model on the integer lattice . The model describes the space evolution of two "species" competing for territory along their boundaries. Each site of the space may contain only one representative (also referred to as a particle) of either type. The spread mechanism for both species is the same: each particle produces offspring independently of other particles and can place them only at the neighboring sites that are either unoccupied, or occupied by particles of the opposite type. In the second case, the old particle is killed by the newborn. The rate of birth for each particle is equal to the number of neighboring sites available for expansion. The main problem we address concerns the possibility of the long-term coexistence of the two species. We have shown that if we start the process with finitely many representatives of each type, then, under the assumption that the limit set in the corresponding first passage percolation model is uniformly curved, there is positive probability of coexistence.

Keywords: Coexistence; First; passage; percolation; Shape; theorem (search for similar items in EconPapers)
Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(04)00188-7
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:115:y:2005:i:5:p:781-796

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:115:y:2005:i:5:p:781-796