Super optimal rates for nonparametric density estimation via projection estimators
F. Comte and
F. Merlevède
Stochastic Processes and their Applications, 2005, vol. 115, issue 5, 797-826
Abstract:
In this paper, we study the problem of the nonparametric estimation of the marginal density f of a class of continuous time processes. To this aim, we use a projection estimator and deal with the integrated mean square risk. Under Castellana and Leadbetter's condition (Stoch. Proc. Appl. 21 (1986) 179), we show that our estimator reaches a parametric rate of convergence and coincides with the projection of the local time estimator. Discussions about the optimality of this condition are provided. We also deal with sampling schemes and the corresponding discretized processes.
Keywords: Castellana-Leadbetter's; condition; Continuous; time; projection; estimator; Markov; processes; Nonparametric; estimation; Local; time; Sampling (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(04)00189-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:115:y:2005:i:5:p:797-826
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().