Bismut-Elworthy's formula and random walk representation for SDEs with reflection
Jean-Dominique Deuschel and
Lorenzo Zambotti
Stochastic Processes and their Applications, 2005, vol. 115, issue 6, 907-925
Abstract:
We study the existence of first derivatives with respect to the initial condition of the solution of a finite system of SDEs with reflection. We prove that such derivatives evolve according to a linear differential equation when the process is away from the boundary and that they are projected to the tangent space when the process hits the boundary. This evolution, rather complicated due to the structure of the set at times when the process is at the boundary, admits a simple representation in terms of an auxiliary random walk. A probabilistic representation formula of Bismut-Elworthy's type is given for the gradient of the transition semigroup of the reflected process.
Keywords: Stochastic; differential; equations; with; reflection; Malliavin; calculus (search for similar items in EconPapers)
Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(05)00012-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:115:y:2005:i:6:p:907-925
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().