Exponential forgetting and geometric ergodicity for optimal filtering in general state-space models
Vladislav B. Tadic and
Arnaud Doucet
Stochastic Processes and their Applications, 2005, vol. 115, issue 8, 1408-1436
Abstract:
State-space models are a very general class of time series capable of modeling-dependent observations in a natural and interpretable way. We consider here the case where the latent process is modeled by a Markov chain taking its values in a continuous space and the observation at each point admits a distribution dependent of both the current state of the Markov chain and the past observation. In this context, under given regularity assumptions, we establish that (1) the filter, and its derivatives with respect to some parameters in the model, have exponential forgetting properties and (2) the extended Markov chain, whose components are the latent process, the observation sequence, the filter and its derivatives is geometrically ergodic. The regularity assumptions are typically satisfied when the latent process takes values in a compact space.
Keywords: Exponential; forgetting; Geometric; ergodicity; Nonlinear; filtering; Projective; metric; State-space; models (search for similar items in EconPapers)
Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(05)00039-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:115:y:2005:i:8:p:1408-1436
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().