EconPapers    
Economics at your fingertips  
 

Weak Dirichlet processes with a stochastic control perspective

Fausto Gozzi and Francesco Russo

Stochastic Processes and their Applications, 2006, vol. 116, issue 11, 1563-1583

Abstract: The motivation of this paper is to prove verification theorems for stochastic optimal control of finite dimensional diffusion processes without control in the diffusion term, in the case where the value function is assumed to be continuous in time and once differentiable in the space variable (C0,1) instead of once differentiable in time and twice in space (C1,2), like in the classical results. For this purpose, the replacement tool of the Itô formula will be the Fukushima-Dirichlet decomposition for weak Dirichlet processes. Given a fixed filtration, a weak Dirichlet process is the sum of a local martingale M plus an adapted process A which is orthogonal, in the sense of covariation, to any continuous local martingale. The decomposition mentioned states that a C0,1 function of a weak Dirichlet process with finite quadratic variation is again a weak Dirichlet process. That result is established in this paper and it is applied to the strong solution of a Cauchy problem with final condition. Applications to the proof of verification theorems will be addressed in a companion paper.

Keywords: Stochastic; calculus; via; regularization; Weak; Dirichlet; processes; Stochastic; optimal; control; Cauchy; problem; for; parabolic; partial; differential; equations (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(06)00051-2
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:116:y:2006:i:11:p:1563-1583

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:116:y:2006:i:11:p:1563-1583