EconPapers    
Economics at your fingertips  
 

Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise

S.S. Sritharan and P. Sundar

Stochastic Processes and their Applications, 2006, vol. 116, issue 11, 1636-1659

Abstract: A Wentzell-Freidlin type large deviation principle is established for the two-dimensional Navier-Stokes equations perturbed by a multiplicative noise in both bounded and unbounded domains. The large deviation principle is equivalent to the Laplace principle in our function space setting. Hence, the weak convergence approach is employed to obtain the Laplace principle for solutions of stochastic Navier-Stokes equations. The existence and uniqueness of a strong solution to (a) stochastic Navier-Stokes equations with a small multiplicative noise, and (b) Navier-Stokes equations with an additional Lipschitz continuous drift term are proved for unbounded domains which may be of independent interest.

Keywords: Stochastic; Navier-Stokes; equations; Large; deviations; Girsanov; theorem (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(06)00044-5
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:116:y:2006:i:11:p:1636-1659

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:116:y:2006:i:11:p:1636-1659