On an approximation problem for stochastic integrals where random time nets do not help
Christel Geiss and
Stefan Geiss
Stochastic Processes and their Applications, 2006, vol. 116, issue 3, 407-422
Abstract:
Given a geometric Brownian motion S=(St)t[set membership, variant][0,T] and a Borel measurable function such that g(ST)[set membership, variant]L2, we approximate bywhere 0=[tau]0[less-than-or-equals, slant]...[less-than-or-equals, slant][tau]n=T is an increasing sequence of stopping times and the vi-1 are -measurable random variables such that ( is the augmentation of the natural filtration of the underlying Brownian motion). In case that g is not almost surely linear, we show that one gets a lower bound for the L2-approximation rate of if one optimizes over all nets consisting of n+1 stopping times. This lower bound coincides with the upper bound for all reasonable functions g in case deterministic time-nets are used. Hence random time nets do not improve the rate of convergence in this case. The same result holds true for the Brownian motion instead of the geometric Brownian motion.
Keywords: Approximation; Stochastic; integrals; Random; time; nets (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(05)00143-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:116:y:2006:i:3:p:407-422
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().