On quadratic functionals of the Brownian sheet and related processes
Paul Deheuvels,
Giovanni Peccati and
Marc Yor
Stochastic Processes and their Applications, 2006, vol. 116, issue 3, 493-538
Abstract:
Motivated by asymptotic problems in the theory of empirical processes, and specifically by tests of independence, we study the law of quadratic functionals of the (weighted) Brownian sheet and of the bivariate Brownian bridge on [0,1]2. In particular: (i) we use Fubini-type techniques to establish identities in law with quadratic functionals of other Gaussian processes, (ii) we explicitly calculate the Laplace transform of such functionals by means of Karhunen-Loève expansions, (iii) we prove central and non-central limit theorems in the spirit of Peccati and Yor [Four limit theorems involving quadratic functionals of Brownian motion and Brownian bridge, Asymptotic Methods in Stochastics, American Mathematical Society, Fields Institute Communication Series, 2004, pp. 75-87] and Nualart and Peccati [Central limit theorems for sequences of multiple stochastic integrals, Ann. Probab. 33(1) (2005) 177-193]. Our results extend some classical computations due to Lévy [Wiener's random function and other Laplacian random functions, in: Second Berkeley Symposium in Probability and Statistics, 1950, pp. 171-186], as well as the formulae recently obtained by Deheuvels and Martynov [Karhunen-Loève expansions for weighted Wiener processes and Brownian bridges via Bessel functions, Progress in Probability, vol. 55, Birkhäuser Verlag, Basel, 2003, pp. 57-93].
Keywords: Empirical; processes; Gaussian; processes; Karhunen-Loeve; expansions; Limit; theorems; Quadratic; functionals; Tests; of; independence (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(05)00145-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:116:y:2006:i:3:p:493-538
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().