First exit times of SDEs driven by stable Lévy processes
P. Imkeller and
I. Pavlyukevich
Stochastic Processes and their Applications, 2006, vol. 116, issue 4, 611-642
Abstract:
We study the exit problem of solutions of the stochastic differential equation from bounded or unbounded intervals which contain the unique asymptotically stable critical point of the deterministic dynamical system . The process L is composed of a standard Brownian motion and a symmetric [alpha]-stable Lévy process. Using probabilistic estimates we show that, in the small noise limit [epsilon]-->0, the exit time of X[epsilon] from an interval is an exponentially distributed random variable and determine its expected value. Due to the heavy-tail nature of the [alpha]-stable component of L, the results differ strongly from the well known case in which the deterministic dynamical system undergoes purely Gaussian perturbations.
Keywords: Lévy; process; Lévy; flight; First; exit; Exit; time; law; [alpha]-Stable; process; Kramers'; law; Infinitely; divisible; distribution; Extreme; events (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(05)00161-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:116:y:2006:i:4:p:611-642
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().