Existence of densities for jumping stochastic differential equations
Nicolas Fournier and
Jean-Sébastien Giet
Stochastic Processes and their Applications, 2006, vol. 116, issue 4, 643-661
Abstract:
We consider a jumping Markov process . We study the absolute continuity of the law of for t>0. We first consider, as Bichteler and Jacod [K. Bichteler, J. Jacod, Calcul de Malliavin pour les diffusions avec sauts, existence d'une densité dans le cas unidimensionel, in: Séminaire de Probabilités XVII, in: L.N.M., vol. 986, Springer, 1983, pp. 132-157] did, the case where the rate of jumping is constant. We state some results in the spirit of those of [K. Bichteler, J. Jacod, Calcul de Malliavin pour les diffusions avec sauts, existence d'une densité dans le cas unidimensionel, in: Séminaire de Probabilités XVII, in: L.N.M., vol. 986, Springer, 1983, pp. 132-157], with rather weaker assumptions and simpler proofs, not relying on the use of stochastic calculus of variations. We next extend our method to the case where the rate of jumping depends on the spatial variable, and this last result seems to be new.
Keywords: Stochastic; differential; equations; Jump; processes; Absolute; continuity (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(05)00165-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:116:y:2006:i:4:p:643-661
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().