Large scale localization of a spatial version of Neveu's branching process
Klaus Fleischmann and
Vitali Wachtel
Stochastic Processes and their Applications, 2006, vol. 116, issue 7, 983-1011
Abstract:
Recently a spatial version of Neveu's (1992) continuous-state branching process was constructed by Fleischmann and Sturm (2004). This superprocess with infinite mean branching behaves quite differently from usual supercritical spatial branching processes. In fact, at macroscopic scales, the mass renormalized to a (random) probability measure is concentrated in a single space point which randomly fluctuates according to the underlying symmetric stable motion process.
Keywords: Neveu's; continuous-state; branching; Infinite; mean; branching; superprocess; Large; scale; concentration; in; one; point; Log-Laplace; product; formula; Small; epsilon; asymptotics (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(05)00189-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:116:y:2006:i:7:p:983-1011
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().