EconPapers    
Economics at your fingertips  
 

Stochastic model for ultraslow diffusion

Mark M. Meerschaert and Hans-Peter Scheffler

Stochastic Processes and their Applications, 2006, vol. 116, issue 9, 1215-1235

Abstract: Ultraslow diffusion is a physical model in which a plume of diffusing particles spreads at a logarithmic rate. Governing partial differential equations for ultraslow diffusion involve fractional time derivatives whose order is distributed over the interval from zero to one. This paper develops the stochastic foundations for ultraslow diffusion based on random walks with a random waiting time between jumps whose probability tail falls off at a logarithmic rate. Scaling limits of these random walks are subordinated random processes whose density functions solve the ultraslow diffusion equation. Along the way, we also show that the density function of any stable subordinator solves an integral equation (5.15) that can be used to efficiently compute this function.

Keywords: Continuous; time; random; walk; Slowly; varying; tails; Anomalous; diffusion; Stable; subordinator (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(06)00007-X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:116:y:2006:i:9:p:1215-1235

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:116:y:2006:i:9:p:1215-1235