Finite approximation schemes for Lévy processes, and their application to optimal stopping problems
Alex Szimayer and
Ross A. Maller
Stochastic Processes and their Applications, 2007, vol. 117, issue 10, 1422-1447
Abstract:
This paper proposes two related approximation schemes, based on a discrete grid on a finite time interval [0,T], and having a finite number of states, for a pure jump Lévy process Lt. The sequences of discrete processes converge to the original process, as the time interval becomes finer and the number of states grows larger, in various modes of weak and strong convergence, according to the way they are constructed. An important feature is that the filtrations generated at each stage by the approximations are sub-filtrations of the filtration generated by the continuous time Lévy process. This property is useful for applications of these results, especially to optimal stopping problems, as we illustrate with an application to American option pricing. The rates of convergence of the discrete approximations to the underlying continuous time process are assessed in terms of a "complexity" measure for the option pricing algorithm. By adding in a construction for a discrete approximation to Brownian motion, we also extend the approximation results to a general Lévy process.
Keywords: Lévy; process; Approximation; Optimal; stopping (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(07)00019-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:117:y:2007:i:10:p:1422-1447
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().