The 1-d stochastic wave equation driven by a fractional Brownian sheet
Lluís Quer-Sardanyons and
Samy Tindel
Stochastic Processes and their Applications, 2007, vol. 117, issue 10, 1448-1472
Abstract:
In this paper, we develop a Young integration theory in dimension 2 which will allow us to solve a non-linear one- dimensional wave equation driven by an arbitrary signal whose rectangular increments satisfy some Hölder regularity conditions, for some Hölder exponent greater than 1/2. This result will be applied to the fractional Brownian sheet.
Keywords: Wave; equation; Fractional; Brownian; sheet; Young; integration (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(07)00020-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:117:y:2007:i:10:p:1448-1472
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().