Senile reinforced random walks
M. Holmes and
A. Sakai
Stochastic Processes and their Applications, 2007, vol. 117, issue 10, 1519-1539
Abstract:
We consider random walks with transition probabilities depending on the number of consecutive traversals n of the edge most recently traversed. Such walks may get stuck on a single edge, or have every vertex recurrent or every vertex transient, depending on the reinforcement function f(n) that characterizes the model. We prove recurrence/transience results when the walk does not get stuck on a single edge. We also show that the diffusion constant need not be monotone in the reinforcement.
Keywords: Random; walk; Reinforcement; Recurrence/transience; Diffusion; constant (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(07)00024-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:117:y:2007:i:10:p:1519-1539
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().