EconPapers    
Economics at your fingertips  
 

Malliavin Greeks without Malliavin calculus

Nan Chen and Paul Glasserman

Stochastic Processes and their Applications, 2007, vol. 117, issue 11, 1689-1723

Abstract: We derive and analyze Monte Carlo estimators of price sensitivities ("Greeks") for contingent claims priced in a diffusion model. There have traditionally been two categories of methods for estimating sensitivities: methods that differentiate paths and methods that differentiate densities. A more recent line of work derives estimators through Malliavin calculus. The purpose of this article is to investigate connections between Malliavin estimators and the more traditional and elementary pathwise method and likelihood ratio method. Malliavin estimators have been derived directly for diffusion processes, but implementation typically requires simulation of a discrete-time approximation. This raises the question of whether one should discretize first and then differentiate, or differentiate first and then discretize. We show that in several important cases the first route leads to the same estimators as are found through Malliavin calculus, but using only elementary techniques. Time-averaging of multiple estimators emerges as a key feature in achieving convergence to the continuous-time limit.

Keywords: Monte; Carlo; simulation; Likelihood; ratio; method; Pathwise; derivative; method; Malliavin; calculus; Weak; convergence (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(07)00087-7
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:117:y:2007:i:11:p:1689-1723

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:117:y:2007:i:11:p:1689-1723