On convergence to the exponential utility problem
Michael Kohlmann and
Christina R. Niethammer
Stochastic Processes and their Applications, 2007, vol. 117, issue 12, 1813-1834
Abstract:
We provide a method for solving dynamic expected utility maximization problems with possibly not everywhere increasing utility functions in an Lp-semimartingale setting. In particular, we solve the problem for utility functions of type (exponential problem) and (2m-th problem). The convergence of the 2m-th problems to the exponential one is proved. Using this result an explicit portfolio for the exponential problem is derived.
Keywords: Convex; analysis; Stochastic; duality; Exponential; utility; function; Minimal; entropy; martingale; measure; Convergence; of; q-optimal; martingale; measures; Wealth; and; portfolios (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(07)00036-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:117:y:2007:i:12:p:1813-1834
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().