EconPapers    
Economics at your fingertips  
 

Functional limit theorems for generalized quadratic variations of Gaussian processes

Arnaud Bégyn

Stochastic Processes and their Applications, 2007, vol. 117, issue 12, 1848-1869

Abstract: In this paper, we establish functional convergence theorems for second order quadratic variations of Gaussian processes which admit a singularity function. First, we prove a functional almost sure convergence theorem, and a functional central limit theorem, for the process of second order quadratic variations, and we illustrate these results with the example of the fractional Brownian sheet (FBS). Second, we do the same study for the process of localized second order quadratic variations, and we apply the results to the multifractional Brownian motion (MBM).

Keywords: Almost; sure; convergence; Central; limit; theorem; Fractional; processes; Gaussian; processes; Generalized; quadratic; variations (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(07)00035-X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:117:y:2007:i:12:p:1848-1869

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:117:y:2007:i:12:p:1848-1869