Approximations and limit theory for quadratic forms of linear processes
R.J. Bhansali,
Liudas Giraitis () and
P.S. Kokoszka
Stochastic Processes and their Applications, 2007, vol. 117, issue 1, 71-95
Abstract:
The paper develops a limit theory for the quadratic form Qn,X in linear random variables X1,...,Xn which can be used to derive the asymptotic normality of various semiparametric, kernel, window and other estimators converging at a rate which is not necessarily n1/2. The theory covers practically all forms of linear serial dependence including long, short and negative memory, and provides conditions which can be readily verified thus eliminating the need to develop technical arguments for special cases. This is accomplished by establishing a general CLT for Qn,X with normalization assuming only 2+[delta] finite moments. Previous results for forms in dependent variables allowed only normalization with n1/2 and required at least four finite moments. Our technique uses approximations of Qn,X by a form Qn,Z in i.i.d. errors Z1,...,Zn. We develop sharp bounds for these approximations which in some cases are faster by the factor n1/2 compared to the existing results.
Keywords: Asymptotic; normality; Integrated; periodogram; Linear; process; Quadratic; form; Semiparametric; and; kernel; estimation (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(06)00085-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:117:y:2007:i:1:p:71-95
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().