Fragmentation at height associated with Lévy processes
Jean-François Delmas
Stochastic Processes and their Applications, 2007, vol. 117, issue 3, 297-311
Abstract:
We consider the height process of a Lévy process with no negative jumps, and its associated continuous tree representation. Using tools developed by Duquesne and Le Gall, we construct a fragmentation process at height, which generalizes the fragmentation at height of stable trees given by Miermont. In this more general framework, we recover that the dislocation measures are the same as the dislocation measures of the fragmentation at nodes introduced by Abraham and Delmas, up to a factor equal to the fragment size. We also compute the asymptotics for the number of small fragments.
Keywords: Fragmentation; Lévy; snake; Dislocation; measure; Local; time; Continuous; random; tree (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(06)00087-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:117:y:2007:i:3:p:297-311
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().