Reflected Brownian motion in generic triangles and wedges
Wouter Kager
Stochastic Processes and their Applications, 2007, vol. 117, issue 5, 539-549
Abstract:
Consider a generic triangle in the upper half of the complex plane with one side on the real line. This paper presents a tailored construction of a discrete random walk whose continuum limit is a Brownian motion in the triangle, reflected instantaneously on the left and right sides with constant reflection angles. Starting from the top of the triangle, it is evident from the construction that the reflected Brownian motion lands with the uniform distribution on the base. This raises some questions on the possible distributions of hulls generated by local processes.
Keywords: Reflected; Brownian; motion; Locality; property (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(06)00143-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:117:y:2007:i:5:p:539-549
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().