Error expansion for the discretization of backward stochastic differential equations
Emmanuel Gobet and
Céline Labart
Stochastic Processes and their Applications, 2007, vol. 117, issue 7, 803-829
Abstract:
We study the error induced by the time discretization of decoupled forward-backward stochastic differential equations (X,Y,Z). The forward component X is the solution of a Brownian stochastic differential equation and is approximated by a Euler scheme XN with N time steps. The backward component is approximated by a backward scheme. Firstly, we prove that the errors (YN-Y,ZN-Z) measured in the strong Lp-sense (p>=1) are of order N-1/2 (this generalizes the results by Zhang [J. Zhang, A numerical scheme for BSDEs, The Annals of Applied Probability 14 (1) (2004) 459-488]). Secondly, an error expansion is derived: surprisingly, the first term is proportional to XN-X while residual terms are of order N-1.
Keywords: Backward; stochastic; differential; equation; Discretization; scheme; Malliavin; calculus; Semi-linear; parabolic; PDE (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(06)00148-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:117:y:2007:i:7:p:803-829
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().