Estimation of the offspring mean in a controlled branching process with a random control function
T.N. Sriram,
A. Bhattacharya,
M. González,
R. Martínez and
I. del Puerto
Stochastic Processes and their Applications, 2007, vol. 117, issue 7, 928-946
Abstract:
Controlled branching processes (CBP) with a random control function provide a useful way to model generation sizes in population dynamics studies, where control on the growth of the population size is necessary at each generation. An important special case of this process is the well known branching process with immigration. Motivated by the work of Wei and Winnicki [C.Z. Wei, J. Winnicki, Estimation of the mean in the branching process with immigration, Ann. Statist. 18 (1990) 1757-1773], we develop a weighted conditional least squares estimator of the offspring mean of the CBP and derive the asymptotic limit distribution of the estimator when the process is subcritical, critical and supercritical. Moreover, we show the strong consistency of this estimator in all the cases. The results obtained here extend those of Wei and Winnicki [C.Z. Wei, J. Winnicki, Estimation of the mean in the branching process with immigration, Ann. Statist. 18 (1990) 1757-1773] for branching processes with immigration and provide a unified limit theory of estimation.
Keywords: Branching; processes; Random; control; function; Weighted; conditional; least; squares; estimator; Weak; convergence; Diffusion; approximation (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(06)00162-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:117:y:2007:i:7:p:928-946
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().