EconPapers    
Economics at your fingertips  
 

Existence and uniqueness of an invariant measure for a chain of oscillators in contact with two heat baths

Philippe Carmona

Stochastic Processes and their Applications, 2007, vol. 117, issue 8, 1076-1092

Abstract: In this note we consider a chain of N oscillators, whose ends are in contact with two heat baths at different temperatures. Our main result is the exponential convergence to the unique invariant probability measure (the stationary state). We use the Lyapunov's function technique of Rey-Bellet and coauthors [Luc Rey-Bellet, Statistical mechanics of anharmonic lattices, in: Advances in Differential Equations and Mathematical Physics (Birmingham, AL, 2002), in: Contemp. Math., vol. 327, Amer. Math. Soc., Providence, RI, 2003, pp. 283-298. MR MR1991548 (2005a:82068)Â [11]; Luc Rey-Bellet, Lawrence E. Thomas, Fluctuations of the entropy production in anharmonic chains, Ann. Henri Poincaré 3 (3) (2002) 483-502. MR MR1915300 (2003g:82060); Luc Rey-Bellet, Lawrence E. Thomas, Exponential convergence to non-equilibrium stationary states in classical statistical mechanics, Comm. Math. Phys. 225 (2) (2002) 305-329. MR MR1889227 (2003f:82052); Luc Rey-Bellet, Lawrence E. Thomas, Asymptotic behavior of thermal nonequilibrium steady states for a driven chain of anharmonic oscillators, Comm. Math. Phys. 215 (1) (2000) 1-24. MR MR1799873 (2001k:82061)Â [12]; Jean-Pierre Eckmann, Claude-Alain Pillet, Luc Rey-Bellet, Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures, Comm. Math. Phys. 201 (3) (1999) 657-697. MR MR1685893 (2000d:82025); Jean-Pierre Eckmann, Claude-Alain Pillet, Luc Rey-Bellet, Entropy production in nonlinear, thermally driven Hamiltonian systems, J. Statist. Phys. 95 (1-2) (1999) 305-331. MR MR1705589 (2000h:82075)], with different model of heat baths, and adapt these techniques to two new case recently considered in the literature by Bernardin and Olla [Cédric Bernardin, Stefano Olla, Fourier's law for a microscopic model of heat conduction, J. Statist. Phys. 121 (3-4) (2005) 271-289. MR MR2185330] and Lefevere and Schenkel [R. Lefevere, A. Schenkel, Normal heat conductivity in a strongly pinned chain of anharmonic oscillators, J. Stat. Mech. Theory Exp. 2006 (02) (2006) L02001].

Keywords: Hamiltonian; chain; Harmonic; oscillator; Heat; bath; Invariant; measure (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(06)00190-6
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:117:y:2007:i:8:p:1076-1092

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:117:y:2007:i:8:p:1076-1092