EconPapers    
Economics at your fingertips  
 

A control approach to robust utility maximization with logarithmic utility and time-consistent penalties

Daniel Hernández-Hernández and Alexander Schied

Stochastic Processes and their Applications, 2007, vol. 117, issue 8, 980-1000

Abstract: We propose a stochastic control approach to the dynamic maximization of robust utility functionals that are defined in terms of logarithmic utility and a dynamically consistent convex risk measure. The underlying market is modeled by a diffusion process whose coefficients are driven by an external stochastic factor process. In particular, the market model is incomplete. Our main results give conditions on the minimal penalty function of the robust utility functional under which the value function of our problem can be identified with the unique classical solution of a quasilinear PDE within a class of functions satisfying certain growth conditions. The fact that we obtain classical solutions rather than viscosity solutions facilitates the use of numerical algorithms, whose applicability is demonstrated in examples.

Keywords: Robust; utility; maximization; Stochastic; factor; model; Stochastic; control; Convex; risk; measure; Dynamic; consistency; Hamilton-Jacobi-Bellman; equation (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(06)00174-8
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:117:y:2007:i:8:p:980-1000

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:117:y:2007:i:8:p:980-1000