Exit times for a class of piecewise exponential Markov processes with two-sided jumps
Martin Jacobsen and
Anders Tolver Jensen
Stochastic Processes and their Applications, 2007, vol. 117, issue 9, 1330-1356
Abstract:
We consider first passage times for piecewise exponential Markov processes that may be viewed as Ornstein-Uhlenbeck processes driven by compound Poisson processes. We allow for two-sided jumps and as a main result we derive the joint Laplace transform of the first passage time of a lower level and the resulting undershoot when passage happens as a consequence of a downward (negative) jump. The Laplace transform is determined using complex contour integrals and we illustrate how the choice of contours depends in a crucial manner on the particular form of the negative jump part, which is allowed to belong to a dense class of probabilities. We give extensions of the main result to two-sided exit problems where the negative jumps are as before but now it is also required that the positive jumps have a distribution of the same type. Further, extensions are given for the case where the driving Lévy process is the sum of a compound Poisson process and an independent Brownian motion. Examples are used to illustrate the theoretical results and include the numerical evaluation of some concrete exit probabilities. Also, some of the examples show that for specific values of the model parameters it is possible to obtain closed form expressions for the Laplace transform, as is the case when residue calculus may be used for evaluating the relevant contour integrals.
Keywords: Shot-noise; process; Ornstein-Uhlenbeck; process; Exit; probabilities; Undershoot; Martingales; Partial; eigenfunctions; Contour; integrals (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(07)00015-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:117:y:2007:i:9:p:1330-1356
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().