On Gittins' index theorem in continuous time
Peter Bank and
Christian Küchler
Stochastic Processes and their Applications, 2007, vol. 117, issue 9, 1357-1371
Abstract:
We give a new and comparably short proof of Gittins' index theorem for dynamic allocation problems of the multi-armed bandit type in continuous time under minimal assumptions. This proof gives a complete characterization of optimal allocation strategies as those policies which follow the current leader among the Gittins indices while ensuring that a Gittins index is at an all-time low whenever the associated project is not worked on exclusively. The main tool is a representation property of Gittins index processes which allows us to show that these processes can be chosen to be pathwise lower semi-continuous from the right and quasi-lower semi-continuous from the left. Both regularity properties turn out to be crucial for our characterization and the construction of optimal allocation policies.
Keywords: Gittins; index; Multi-armed; bandits; Representation; theorem (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(07)00016-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:117:y:2007:i:9:p:1357-1371
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().