An Itô-Stratonovich formula for Gaussian processes: A Riemann sums approach
D. Nualart and
S. Ortiz-Latorre
Stochastic Processes and their Applications, 2008, vol. 118, issue 10, 1803-1819
Abstract:
The aim of this paper is to establish a change of variable formula for general Gaussian processes whose covariance function satisfies some technical conditions. The stochastic integral is defined in the Stratonovich sense using an approximation by middle point Riemann sums. The change of variable formula is proved by means of a Taylor expansion up to the sixth order, and applying the techniques of Malliavin calculus to show the convergence to zero of the residual terms. The conditions on the covariance function are weak enough to include processes with infinite quadratic variation, and we show that they are satisfied by the bifractional Brownian motion with parameters (H,K) such that 1/6
Keywords: Ito-Stratonovich; formula; Gaussian; processes; Malliavin; calculus; Riemann; sums; approach (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(07)00187-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:118:y:2008:i:10:p:1803-1819
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().