EconPapers    
Economics at your fingertips  
 

Generalized positive continuous additive functionals of multidimensional Brownian motion and their associated Revuz measures

H. Uemura

Stochastic Processes and their Applications, 2008, vol. 118, issue 10, 1870-1891

Abstract: We extend the notion of positive continuous additive functionals of multidimensional Brownian motions to generalized Wiener functionals in the setting of Malliavin calculus. We call such a functional a generalized PCAF. The associated Revuz measure and a characteristic of a generalized PCAF are also extended adequately. By making use of these tools a local time representation of generalized PCAFs is discussed. It is known that a Radon measure corresponds to a generalized Wiener functional through the occupation time formula. We also study a condition for this functional to be a generalized PCAF and the relation between the associated Revuz measure of the generalized PCAF corresponding to Radon measure and this Radon measure. Finally we discuss a criterion to determine the exact Meyer-Watanabe's Sobolev space to which this corresponding functional belongs.

Keywords: Positive; continuous; additive; functional; Local; time; Revuz; measure; Ito-Wiener; chaos; expansion (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(07)00185-8
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:118:y:2008:i:10:p:1870-1891

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:118:y:2008:i:10:p:1870-1891