An optimal control variance reduction method for density estimation
Ahmed Kebaier and
Arturo Kohatsu-Higa
Stochastic Processes and their Applications, 2008, vol. 118, issue 12, 2143-2180
Abstract:
We study the problem of density estimation of a non-degenerate diffusion using kernel functions. Thanks to Malliavin calculus techniques, we obtain an expansion of the discretization error. Then, we introduce a new control variate method in order to reduce the variance in the density estimation. We prove a stable law convergence theorem of the type obtained in Jacod-Kurtz-Protter for the first Malliavin derivative of the error process, which leads us to get a CLT for the new control variate algorithm. This CLT gives us a precise description of the optimal parameters of the method.
Keywords: Kernel; density; estimation; Stochastic; differential; equations; Variance; reduction; Weak; approximation; Central; limit; theorem; Malliavin; calculus (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(08)00014-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:118:y:2008:i:12:p:2143-2180
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().