A stochastic linear-quadratic problem with Lévy processes and its application to finance
Ken-ichi Mitsui and
Yoshio Tabata
Stochastic Processes and their Applications, 2008, vol. 118, issue 1, 120-152
Abstract:
We study a Linear-Quadratic Regulation (LQR) problem with Lévy processes and establish the closeness property of the solution of the multi-dimensional Backward Stochastic Riccati Differential Equation (BSRDE) with Lévy processes. In particular, we consider multi-dimensional and one-dimensional BSRDEs with Teugel's martingales which are more general processes driven by Lévy processes. We show the existence and uniqueness of solutions to the one-dimensional regular and singular BSRDEs with Lévy processes by means of the closeness property of the BSRDE and obtain the optimal control for the non-homogeneous case. An application of the backward stochastic differential equation approach to a financial (portfolio selection) problem with full and partial observation cases is provided.
Keywords: Linear-quadratic; regulators; Lévy; process; Backward; stochastic; (Riccati); differential; equation; Regular; and; singular; case (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(07)00053-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:118:y:2008:i:1:p:120-152
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().