Monte-Carlo simulation of stochastic differential systems -- a geometrical approach
C.J.S. Alves and
A.B. Cruzeiro
Stochastic Processes and their Applications, 2008, vol. 118, issue 3, 346-367
Abstract:
We develop some numerical schemes for d-dimensional stochastic differential equations derived from Milstein approximations of diffusions which are obtained by lifting the solutions of the stochastic differential equations to higher dimensional spaces using geometrical tools, in the line of the work [A.B. Cruzeiro, P. Malliavin, A. Thalmaier, Geometrization of Monte-Carlo numerical analysis of an elliptic operator: Strong approximation, C. R. Acad. Sci. Paris, Ser. I 338 (2004) 481-486].
Keywords: Numerical; approximation; of; stochastic; differential; equations; Geometrical; numerical; schemes; for; diffusions; Milstein; numerical; schemes (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(07)00069-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:118:y:2008:i:3:p:346-367
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().