Central limit theorem for a tagged particle in asymmetric simple exclusion
Patrícia Gonçalves
Stochastic Processes and their Applications, 2008, vol. 118, issue 3, 474-502
Abstract:
We prove a functional central limit theorem for the position of a tagged particle in the one-dimensional asymmetric simple exclusion process for hyperbolic scaling, starting from a Bernoulli product measure conditioned to have a particle at the origin. We also prove that the position of the tagged particle at time t depends on the initial configuration, through the number of empty sites in the interval [0,(p-q)[alpha]t] divided by [alpha], on the hyperbolic time scale and on a longer time scale, namely N4/3.
Keywords: Asymmetric; exclusion; Equilibrium; fluctuations; Boltzmann-Gibbs; principle; Tagged; particle (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(07)00074-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:118:y:2008:i:3:p:474-502
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().