EconPapers    
Economics at your fingertips  
 

Asymptotic properties of particle filter-based maximum likelihood estimators for state space models

Jimmy Olsson and Tobias Rydén

Stochastic Processes and their Applications, 2008, vol. 118, issue 4, 649-680

Abstract: We study the asymptotic performance of approximate maximum likelihood estimators for state space models obtained via sequential Monte Carlo methods. The state space of the latent Markov chain and the parameter space are assumed to be compact. The approximate estimates are computed by, firstly, running possibly dependent particle filters on a fixed grid in the parameter space, yielding a pointwise approximation of the log-likelihood function. Secondly, extensions of this approximation to the whole parameter space are formed by means of piecewise constant functions or B-spline interpolation, and approximate maximum likelihood estimates are obtained through maximization of the resulting functions. In this setting we formulate criteria for how to increase the number of particles and the resolution of the grid in order to produce estimates that are consistent and asymptotically normal.

Keywords: Asymptotic; normality; Consistency; Hidden; Markov; model; Maximum; likelihood; Particle; filter; Sequential; Monte; Carlo; methods; State; space; models (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(07)00084-1
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:118:y:2008:i:4:p:649-680

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:118:y:2008:i:4:p:649-680