Upper limits of Sinai's walk in random scenery
Olivier Zindy
Stochastic Processes and their Applications, 2008, vol. 118, issue 6, 981-1003
Abstract:
We consider Sinai's walk in i.i.d. random scenery and focus our attention on a conjecture of Révész concerning the upper limits of Sinai's walk in random scenery when the scenery is bounded from above. A close study of the competition between the concentration property for Sinai's walk and negative values for the scenery enables us to prove that the conjecture is true if the scenery has "thin" negative tails and is false otherwise.
Keywords: Random; walk; in; random; environment; Random; scenery; Localization; Concentration; property (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(07)00119-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:118:y:2008:i:6:p:981-1003
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().