On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions
Eva Löcherbach and
Dasha Loukianova
Stochastic Processes and their Applications, 2008, vol. 118, issue 8, 1301-1321
Abstract:
We introduce a sequence of stopping times that allow us to study an analogue of a life-cycle decomposition for a continuous time Markov process, which is an extension of the well-known splitting technique of Nummelin to the continuous time case. As a consequence, we are able to give deterministic equivalents of additive functionals of the process and to state a generalisation of Chen's inequality. We apply our results to the problem of non-parametric kernel estimation of the drift of multi-dimensional recurrent, but not necessarily ergodic, diffusion processes.
Keywords: Harris; recurrence; Nummelin; splitting; Continuous; time; Markov; processes; Resolvents; Special; functions; Additive; functionals; Chacon-Ornstein; theorem; Diffusion; process; Nadaraya-Watson; estimator (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(07)00161-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:118:y:2008:i:8:p:1301-1321
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().