Computation of the invariant measure for a Lévy driven SDE: Rate of convergence
Fabien Panloup
Stochastic Processes and their Applications, 2008, vol. 118, issue 8, 1351-1384
Abstract:
We study the rate of convergence of some recursive procedures based on some "exact" or "approximate" Euler schemes which converge to the invariant measure of an ergodic SDE driven by a Lévy process. The main interest of this work is to compare the rates induced by "exact" and "approximate" Euler schemes. In our main result, we show that replacing the small jumps by a Brownian component in the approximate case preserves the rate induced by the exact Euler scheme for a large class of Lévy processes.
Keywords: Stochastic; differential; equation; Lévy; process; Invariant; distribution; Euler; scheme; Rate; of; convergence (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(07)00165-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:118:y:2008:i:8:p:1351-1384
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().