A general framework for simulation of fractional fields
Serge Cohen,
Céline Lacaux and
Michel Ledoux
Stochastic Processes and their Applications, 2008, vol. 118, issue 9, 1489-1517
Abstract:
Besides fractional Brownian motion most non-Gaussian fractional fields are obtained by integration of deterministic kernels with respect to a random infinitely divisible measure. In this paper, generalized shot noise series are used to obtain approximations of most of these fractional fields, including linear and harmonizable fractional stable fields. Almost sure and Lr-norm rates of convergence, relying on asymptotic developments of the deterministic kernels, are presented as a consequence of an approximation result concerning series of symmetric random variables. When the control measure is infinite, normal approximation has to be used as a complement. The general framework is illustrated by simulations of classical fractional fields.
Keywords: Simulation; of; random; fields; Fractional; fields; Infinitely; divisible; distributions (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(07)00167-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:118:y:2008:i:9:p:1489-1517
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().