EconPapers    
Economics at your fingertips  
 

Mean-field backward stochastic differential equations and related partial differential equations

Rainer Buckdahn, Juan Li and Shige Peng

Stochastic Processes and their Applications, 2009, vol. 119, issue 10, 3133-3154

Abstract: In [R. Buckdahn, B. Djehiche, J. Li, S. Peng, Mean-field backward stochastic differential equations. A limit approach. Ann. Probab. (2007) (in press). Available online: http://www.imstat.org/aop/future_papers.htm] the authors obtained mean-field Backward Stochastic Differential Equations (BSDE) associated with a mean-field Stochastic Differential Equation (SDE) in a natural way as a limit of a high dimensional system of forward and backward SDEs, corresponding to a large number of "particles" (or "agents"). The objective of the present paper is to deepen the investigation of such mean-field BSDEs by studying them in a more general framework, with general coefficient, and to discuss comparison results for them. In a second step we are interested in Partial Differential Equations (PDE) whose solutions can be stochastically interpreted in terms of mean-field BSDEs. For this we study a mean-field BSDE in a Markovian framework, associated with a McKean-Vlasov forward equation. By combining classical BSDE methods, in particular that of "backward semigroups" introduced by Peng [S. Peng, J. Yan, S. Peng, S. Fang, L. Wu (Eds.), in: BSDE and Stochastic Optimizations; Topics in Stochastic Analysis, Science Press, Beijing (1997) (Chapter 2) (in Chinese)], with specific arguments for mean-field BSDEs, we prove that this mean-field BSDE gives the viscosity solution of a nonlocal PDE. The uniqueness of this viscosity solution is obtained for the space of continuous functions with polynomial growth. With the help of an example it is shown that for the nonlocal PDEs associated with mean-field BSDEs one cannot expect to have uniqueness in a larger space of continuous functions.

Keywords: Mean-field; models; McKean-Vlasov; equation; Backward; stochastic; differential; equations; Comparison; theorem; Dynamic; programming; principle; Viscosity; solution (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (43)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00088-X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:10:p:3133-3154

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:119:y:2009:i:10:p:3133-3154