An empirical Central Limit Theorem in for stationary sequences
Sophie Dede
Stochastic Processes and their Applications, 2009, vol. 119, issue 10, 3494-3515
Abstract:
In this paper, we derive asymptotic results for the -Wasserstein distance between the distribution function and the corresponding empirical distribution function of a stationary sequence. Next, we give some applications to dynamical systems and causal linear processes. To prove our main result, we give a Central Limit Theorem for ergodic stationary sequences of random variables with values in . The conditions obtained are expressed in terms of projective-type conditions. The main tools are martingale approximations.
Keywords: Empirical; distribution; function; Central; Limit; Theorem; Stationary; sequences; Wasserstein; distance (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00112-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:10:p:3494-3515
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().