Existence and uniqueness of viscosity solutions for QVI associated with impulse control of jump-diffusions
Roland C. Seydel
Stochastic Processes and their Applications, 2009, vol. 119, issue 10, 3719-3748
Abstract:
General theorems for existence and uniqueness of viscosity solutions for Hamilton-Jacobi-Bellman quasi-variational inequalities (HJBQVI) with integral term are established. Such nonlinear partial integro-differential equations (PIDE) arise in the study of combined impulse and stochastic control for jump-diffusion processes. The HJBQVI consists of an HJB part (for stochastic control) combined with a nonlocal impulse intervention term. Existence results are proved via stochastic means, whereas our uniqueness (comparison) results adapt techniques from viscosity solution theory. This paper, to our knowledge is the first treating rigorously impulse control for jump-diffusion processes in a general viscosity solution framework; the jump part may have infinite activity. In the proofs, no prior continuity of the value function is assumed, quadratic costs are allowed, and elliptic and parabolic results are presented for solutions possibly unbounded at infinity.
Keywords: Impulse; control; Combined; stochastic; control; Jump-diffusion; processes; Viscosity; solutions; Quasi-variational; inequalities (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00121-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:10:p:3719-3748
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().