EconPapers    
Economics at your fingertips  
 

A simulation approach to optimal stopping under partial information

Michael Ludkovski

Stochastic Processes and their Applications, 2009, vol. 119, issue 12, 4061-4087

Abstract: We study the numerical solution of nonlinear partially observed optimal stopping problems. The system state is taken to be a multi-dimensional diffusion and drives the drift of the observation process, which is another multi-dimensional diffusion with correlated noise. Such models where the controller is not fully aware of her environment are of interest in applied probability and financial mathematics. We propose a new approximate numerical algorithm based on the particle filtering and regression Monte Carlo methods. The algorithm maintains a continuous state space and yields an integrated approach to the filtering and control sub-problems. Our approach is entirely simulation-based and therefore allows for a robust implementation with respect to model specification. We carry out the error analysis of our scheme and illustrate with several computational examples. An extension to discretely observed stochastic volatility models is also considered.

Keywords: Optimal; stopping; Nonlinear; filtering; Particle; filters; Snell; envelope; Regression; Monte; Carlo (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00158-6
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:12:p:4061-4087

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:119:y:2009:i:12:p:4061-4087