Quantile inference for near-integrated autoregressive time series under infinite variance and strong dependence
Ngai Hang Chan and
Rong-Mao Zhang
Stochastic Processes and their Applications, 2009, vol. 119, issue 12, 4124-4148
Abstract:
Consider a near-integrated time series driven by a heavy-tailed and long-memory noise , where {[eta]j} is a sequence of i.i.d random variables belonging to the domain of attraction of a stable law with index [alpha]. The limit distribution of the quantile estimate and the semi-parametric estimate of the autoregressive parameters with long- and short-range dependent innovations are established in this paper. Under certain regularity conditions, it is shown that when the noise is short-memory, the quantile estimate converges weakly to a mixture of a Gaussian process and a stable Ornstein-Uhlenbeck (O-U) process while the semi-parametric estimate converges weakly to a normal distribution. But when the noise is long-memory, the limit distribution of the quantile estimate becomes substantially different. Depending on the range of the stable index [alpha], the limit distribution is shown to be either a functional of a fractional stable O-U process or a mixture of a stable process and a stable O-U process. These results indicate that although the quantile estimate tends to be more efficient for infinite variance time series, extreme caution should be exercised in the long-memory situation.
Keywords: Heavy-tailed; Long-range; dependent; Near-integrated; time; series; and; quantile; regression (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00161-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:12:p:4124-4148
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().