Empirical distributions in marked point processes
Zbynek Pawlas
Stochastic Processes and their Applications, 2009, vol. 119, issue 12, 4194-4209
Abstract:
We study the asymptotic behaviour of the empirical distribution function derived from a stationary marked point process when a convex sampling window is expanding without bounds in all directions. We consider a random field model which assumes that the marks and the points are independent and admits dependencies between the marks. The main result is the weak convergence of the empirical process under strong mixing conditions on both independent components of the model. Applying an approximation principle weak convergence can be also shown for appropriately weighted empirical process defined from a stationary d-dimensional germ-grain process with dependent grains.
Keywords: Empirical; process; Geostatistical; marking; Germ-grain; process; Marked; point; process; Random; field; Strong; mixing (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00167-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:12:p:4194-4209
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().