EconPapers    
Economics at your fingertips  
 

COGARCH as a continuous-time limit of GARCH(1,1)

Jan Kallsen and Bernhard Vesenmayer

Stochastic Processes and their Applications, 2009, vol. 119, issue 1, 74-98

Abstract: COGARCH is an extension of the GARCH time series concept to continuous time, which has been suggested by Klüppelberg, Lindner and Maller [C. Klüppelberg, A. Lindner, R. Maller, A continuous-time GARCH process driven by a Lévy process: Stationarity and second order behaviour, Journal of Applied Probability 41 (2004) 601-622]. We show that any COGARCH process can be represented as the limit in law of a sequence of GARCH(1,1) processes. As a by-product we derive the infinitesimal generator of the bivariate Markov process representation of COGARCH. Moreover, we argue heuristically that COGARCH and the classical bivariate diffusion limit of Nelson [D. Nelson, ARCH models as diffusion approximations, Journal of Econometrics 45 (1990) 7-38] are probably the only continuous-time limits of GARCH.

Keywords: GARCH; Continuous; time; Limit; theorem; Markov; process; Generator (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(08)00020-3
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:1:p:74-98

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:119:y:2009:i:1:p:74-98