A stochastic heat equation with the distributions of Lévy processes as its invariant measures
Tadahisa Funaki and
Bin Xie
Stochastic Processes and their Applications, 2009, vol. 119, issue 2, 307-326
Abstract:
We consider a linear heat equation on a half line with an additive noise chosen properly in such a manner that its invariant measures are a class of distributions of Lévy processes. Our assumption on the corresponding Lévy measure is, in general, mild except that we need its integrability to show that the distributions of Lévy processes are the only invariant measures of the stochastic heat equation.
Keywords: Stochastic; heat; equation; Stochastic; partial; differential; equation; Lévy; process (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(08)00040-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:2:p:307-326
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().