EconPapers    
Economics at your fingertips  
 

Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion

David Nualart and Bruno Saussereau

Stochastic Processes and their Applications, 2009, vol. 119, issue 2, 391-409

Abstract: We prove the Malliavin regularity of the solution of a stochastic differential equation driven by a fractional Brownian motion of Hurst parameter H>0.5. The result is based on the Fréchet differentiability with respect to the input function for deterministic differential equations driven by Hölder continuous functions. It is also shown that the law of the solution has a density with respect to the Lebesgue measure, under a suitable nondegeneracy condition.

Keywords: Stochastic; differential; equation; Malliavin; calculus; Fractional; Brownian; motion (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(08)00058-6
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:2:p:391-409

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:119:y:2009:i:2:p:391-409