Large deviations for statistics of the Jacobi process
N. Demni and
M. Zani
Stochastic Processes and their Applications, 2009, vol. 119, issue 2, 518-533
Abstract:
This paper aims to derive large deviations for statistics of the Jacobi process already conjectured by M. Zani in her thesis. To proceed, we write in a simpler way the Jacobi semi-group density. Being given by a bilinear sum involving Jacobi polynomials, it differs from Hermite and Laguerre cases by the quadratic form of its eigenvalues. Our attempt relies on subordinating the process using a suitable random time change. This gives a Mehler-type formula whence we recover the desired semi-group density. Once we do, an adaptation of Zani's result [M. Zani, Large deviations for squared radial Ornstein-Uhlenbeck processes, Stochastic. Process. Appl. 102 (1) (2002) 25-42] to the non-steep case will provide the required large deviations principle.
Keywords: Jacobi; process; Subordinated; Jacobi; process; Large; deviations; Maximum; likelihood (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(08)00045-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:2:p:518-533
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().