Approximation of the tail probability of randomly weighted sums and applications
Yi Zhang,
Xinmei Shen and
Chengguo Weng
Stochastic Processes and their Applications, 2009, vol. 119, issue 2, 655-675
Abstract:
Consider the problem of approximating the tail probability of randomly weighted sums and their maxima, where {Xi,i>=1} is a sequence of identically distributed but not necessarily independent random variables from the extended regular variation class, and {[Theta]i,i>=1} is a sequence of nonnegative random variables, independent of {Xi,i>=1} and satisfying certain moment conditions. Under the assumption that {Xi,i>=1} has no bivariate upper tail dependence along with some other mild conditions, this paper establishes the following asymptotic relations: and as x-->[infinity]. In doing so, no assumption is made on the dependence structure of the sequence {[Theta]i,i>=1}.
Keywords: Randomly; weighted; sums; Asymptotics; Regular; variation; Upper; tail; dependence; Ruin; probability; Stochastic; difference; equations (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(08)00055-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:2:p:655-675
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().