Collision probability for random trajectories in two dimensions
A. Gaudillière
Stochastic Processes and their Applications, 2009, vol. 119, issue 3, 775-810
Abstract:
We give a lower bound for the non-collision probability up to a long time T in a system of n independent random walks with fixed obstacles on . By 'collision' we mean collision between the random walks as well as collision with the fixed obstacles. We give an analogous result for Brownian particles on the plane. As a corollary we show that the non-collision request leads only to logarithmic corrections for a spread-out property of the independent random walk system.
Keywords: Non-collision; probability; Potential; theory; Scale-invariance; properties; Kawasaki; dynamics (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(08)00076-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:119:y:2009:i:3:p:775-810
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().